Metamath Proof Explorer


Theorem 2sqreunn

Description: There exists a unique decomposition of a prime of the form 4 k + 1 as a sum of squares of two positive integers. See 2sqnn for the existence of such a decomposition. (Contributed by AV, 11-Jun-2023) (Revised by AV, 25-Jun-2023)

Ref Expression
Hypothesis 2sqreu.1 φaba2+b2=P
Assertion 2sqreunn PPmod4=1∃!abφ∃!baφ

Proof

Step Hyp Ref Expression
1 2sqreu.1 φaba2+b2=P
2 2sqreunnlem1 PPmod4=1∃!a∃!baba2+b2=P
3 1 bicomi aba2+b2=Pφ
4 3 reubii ∃!baba2+b2=P∃!bφ
5 4 reubii ∃!a∃!baba2+b2=P∃!a∃!bφ
6 1 2sqreunnlem2 a*bφ
7 2reu1 a*bφ∃!a∃!bφ∃!abφ∃!baφ
8 6 7 mp1i PPmod4=1∃!a∃!bφ∃!abφ∃!baφ
9 5 8 bitrid PPmod4=1∃!a∃!baba2+b2=P∃!abφ∃!baφ
10 2 9 mpbid PPmod4=1∃!abφ∃!baφ