Description: All primes of the form 4 k + 1 are sums of squares of two positive integers. (Contributed by AV, 11-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 2sqnn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqnn0 | |
|
2 | elnn0 | |
|
3 | elnn0 | |
|
4 | oveq1 | |
|
5 | 4 | oveq1d | |
6 | 5 | eqeq2d | |
7 | oveq1 | |
|
8 | 7 | oveq2d | |
9 | 8 | eqeq2d | |
10 | 6 9 | rspc2ev | |
11 | 10 | 3expia | |
12 | 11 | a1d | |
13 | 12 | expcom | |
14 | sq0i | |
|
15 | 14 | adantr | |
16 | 15 | oveq1d | |
17 | nncn | |
|
18 | 17 | sqcld | |
19 | 18 | addlidd | |
20 | 19 | adantl | |
21 | 16 20 | eqtrd | |
22 | 21 | eqeq2d | |
23 | eleq1 | |
|
24 | 23 | adantl | |
25 | nnz | |
|
26 | sqnprm | |
|
27 | 25 26 | syl | |
28 | 27 | pm2.21d | |
29 | 28 | adantr | |
30 | 24 29 | sylbid | |
31 | 30 | ex | |
32 | 31 | adantl | |
33 | 22 32 | sylbid | |
34 | 33 | com23 | |
35 | 34 | expcom | |
36 | 13 35 | jaod | |
37 | sq0i | |
|
38 | 37 | adantr | |
39 | 38 | oveq2d | |
40 | nncn | |
|
41 | 40 | sqcld | |
42 | 41 | addridd | |
43 | 42 | adantl | |
44 | 39 43 | eqtrd | |
45 | 44 | eqeq2d | |
46 | eleq1 | |
|
47 | 46 | adantl | |
48 | nnz | |
|
49 | sqnprm | |
|
50 | 48 49 | syl | |
51 | 50 | pm2.21d | |
52 | 51 | adantr | |
53 | 47 52 | sylbid | |
54 | 53 | ex | |
55 | 54 | adantl | |
56 | 45 55 | sylbid | |
57 | 56 | com23 | |
58 | 57 | ex | |
59 | 14 37 | oveqan12rd | |
60 | 00id | |
|
61 | 59 60 | eqtrdi | |
62 | 61 | eqeq2d | |
63 | eleq1 | |
|
64 | 0nprm | |
|
65 | 64 | pm2.21i | |
66 | 63 65 | syl6bi | |
67 | 62 66 | syl6bi | |
68 | 67 | com23 | |
69 | 68 | ex | |
70 | 58 69 | jaod | |
71 | 36 70 | jaoi | |
72 | 3 71 | sylbi | |
73 | 72 | com12 | |
74 | 2 73 | sylbi | |
75 | 74 | imp | |
76 | 75 | com12 | |
77 | 76 | adantr | |
78 | 77 | rexlimdvv | |
79 | 1 78 | mpd | |