| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|
| 2 |
|
oveq1 |
|
| 3 |
2
|
eqeq1d |
|
| 4 |
3
|
reubidv |
|
| 5 |
|
eqeq1 |
|
| 6 |
5
|
imbi2d |
|
| 7 |
6
|
ralbidv |
|
| 8 |
4 7
|
anbi12d |
|
| 9 |
8
|
adantl |
|
| 10 |
|
0cnd |
|
| 11 |
|
reueq |
|
| 12 |
10 11
|
sylib |
|
| 13 |
|
subid |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
|
simpl |
|
| 17 |
|
simpr |
|
| 18 |
17
|
sqcld |
|
| 19 |
16 16 18
|
subaddd |
|
| 20 |
|
eqcom |
|
| 21 |
|
sqeq0 |
|
| 22 |
20 21
|
bitrid |
|
| 23 |
22
|
adantl |
|
| 24 |
15 19 23
|
3bitr3d |
|
| 25 |
24
|
reubidva |
|
| 26 |
12 25
|
mpbird |
|
| 27 |
|
simpr |
|
| 28 |
27
|
adantr |
|
| 29 |
|
sqcl |
|
| 30 |
29
|
adantl |
|
| 31 |
|
simpl |
|
| 32 |
31
|
adantr |
|
| 33 |
28 30 32
|
addrsub |
|
| 34 |
33
|
reubidva |
|
| 35 |
|
subcl |
|
| 36 |
|
reusq0 |
|
| 37 |
35 36
|
syl |
|
| 38 |
|
subeq0 |
|
| 39 |
38
|
biimpd |
|
| 40 |
37 39
|
sylbid |
|
| 41 |
34 40
|
sylbid |
|
| 42 |
41
|
ralrimiva |
|
| 43 |
26 42
|
jca |
|
| 44 |
1 9 43
|
rspcedvd |
|
| 45 |
|
oveq1 |
|
| 46 |
45
|
eqeq1d |
|
| 47 |
46
|
reubidv |
|
| 48 |
47
|
reu8 |
|
| 49 |
44 48
|
sylibr |
|