| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sqnn0 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
| 2 |
|
elnn0 |
⊢ ( 𝑎 ∈ ℕ0 ↔ ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) ) |
| 3 |
|
elnn0 |
⊢ ( 𝑏 ∈ ℕ0 ↔ ( 𝑏 ∈ ℕ ∨ 𝑏 = 0 ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
| 6 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
| 9 |
8
|
eqeq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) ) |
| 10 |
6 9
|
rspc2ev |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ∧ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
| 11 |
10
|
3expia |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 12 |
11
|
a1d |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 13 |
12
|
expcom |
⊢ ( 𝑏 ∈ ℕ → ( 𝑎 ∈ ℕ → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
| 14 |
|
sq0i |
⊢ ( 𝑎 = 0 → ( 𝑎 ↑ 2 ) = 0 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 𝑎 ↑ 2 ) = 0 ) |
| 16 |
15
|
oveq1d |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 0 + ( 𝑏 ↑ 2 ) ) ) |
| 17 |
|
nncn |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℂ ) |
| 18 |
17
|
sqcld |
⊢ ( 𝑏 ∈ ℕ → ( 𝑏 ↑ 2 ) ∈ ℂ ) |
| 19 |
18
|
addlidd |
⊢ ( 𝑏 ∈ ℕ → ( 0 + ( 𝑏 ↑ 2 ) ) = ( 𝑏 ↑ 2 ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 0 + ( 𝑏 ↑ 2 ) ) = ( 𝑏 ↑ 2 ) ) |
| 21 |
16 20
|
eqtrd |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑏 ↑ 2 ) ) |
| 22 |
21
|
eqeq2d |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ 𝑃 = ( 𝑏 ↑ 2 ) ) ) |
| 23 |
|
eleq1 |
⊢ ( 𝑃 = ( 𝑏 ↑ 2 ) → ( 𝑃 ∈ ℙ ↔ ( 𝑏 ↑ 2 ) ∈ ℙ ) ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝑏 ∈ ℕ ∧ 𝑃 = ( 𝑏 ↑ 2 ) ) → ( 𝑃 ∈ ℙ ↔ ( 𝑏 ↑ 2 ) ∈ ℙ ) ) |
| 25 |
|
nnz |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℤ ) |
| 26 |
|
sqnprm |
⊢ ( 𝑏 ∈ ℤ → ¬ ( 𝑏 ↑ 2 ) ∈ ℙ ) |
| 27 |
25 26
|
syl |
⊢ ( 𝑏 ∈ ℕ → ¬ ( 𝑏 ↑ 2 ) ∈ ℙ ) |
| 28 |
27
|
pm2.21d |
⊢ ( 𝑏 ∈ ℕ → ( ( 𝑏 ↑ 2 ) ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑏 ∈ ℕ ∧ 𝑃 = ( 𝑏 ↑ 2 ) ) → ( ( 𝑏 ↑ 2 ) ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 30 |
24 29
|
sylbid |
⊢ ( ( 𝑏 ∈ ℕ ∧ 𝑃 = ( 𝑏 ↑ 2 ) ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 31 |
30
|
ex |
⊢ ( 𝑏 ∈ ℕ → ( 𝑃 = ( 𝑏 ↑ 2 ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 𝑃 = ( 𝑏 ↑ 2 ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 33 |
22 32
|
sylbid |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 34 |
33
|
com23 |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 35 |
34
|
expcom |
⊢ ( 𝑏 ∈ ℕ → ( 𝑎 = 0 → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
| 36 |
13 35
|
jaod |
⊢ ( 𝑏 ∈ ℕ → ( ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
| 37 |
|
sq0i |
⊢ ( 𝑏 = 0 → ( 𝑏 ↑ 2 ) = 0 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( 𝑏 ↑ 2 ) = 0 ) |
| 39 |
38
|
oveq2d |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + 0 ) ) |
| 40 |
|
nncn |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℂ ) |
| 41 |
40
|
sqcld |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 ↑ 2 ) ∈ ℂ ) |
| 42 |
41
|
addridd |
⊢ ( 𝑎 ∈ ℕ → ( ( 𝑎 ↑ 2 ) + 0 ) = ( 𝑎 ↑ 2 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + 0 ) = ( 𝑎 ↑ 2 ) ) |
| 44 |
39 43
|
eqtrd |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑎 ↑ 2 ) ) |
| 45 |
44
|
eqeq2d |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ 𝑃 = ( 𝑎 ↑ 2 ) ) ) |
| 46 |
|
eleq1 |
⊢ ( 𝑃 = ( 𝑎 ↑ 2 ) → ( 𝑃 ∈ ℙ ↔ ( 𝑎 ↑ 2 ) ∈ ℙ ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑃 = ( 𝑎 ↑ 2 ) ) → ( 𝑃 ∈ ℙ ↔ ( 𝑎 ↑ 2 ) ∈ ℙ ) ) |
| 48 |
|
nnz |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℤ ) |
| 49 |
|
sqnprm |
⊢ ( 𝑎 ∈ ℤ → ¬ ( 𝑎 ↑ 2 ) ∈ ℙ ) |
| 50 |
48 49
|
syl |
⊢ ( 𝑎 ∈ ℕ → ¬ ( 𝑎 ↑ 2 ) ∈ ℙ ) |
| 51 |
50
|
pm2.21d |
⊢ ( 𝑎 ∈ ℕ → ( ( 𝑎 ↑ 2 ) ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑃 = ( 𝑎 ↑ 2 ) ) → ( ( 𝑎 ↑ 2 ) ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 53 |
47 52
|
sylbid |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑃 = ( 𝑎 ↑ 2 ) ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 54 |
53
|
ex |
⊢ ( 𝑎 ∈ ℕ → ( 𝑃 = ( 𝑎 ↑ 2 ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( 𝑃 = ( 𝑎 ↑ 2 ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 56 |
45 55
|
sylbid |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 57 |
56
|
com23 |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 58 |
57
|
ex |
⊢ ( 𝑏 = 0 → ( 𝑎 ∈ ℕ → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
| 59 |
14 37
|
oveqan12rd |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 = 0 ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 0 + 0 ) ) |
| 60 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 61 |
59 60
|
eqtrdi |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 = 0 ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 0 ) |
| 62 |
61
|
eqeq2d |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 = 0 ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ 𝑃 = 0 ) ) |
| 63 |
|
eleq1 |
⊢ ( 𝑃 = 0 → ( 𝑃 ∈ ℙ ↔ 0 ∈ ℙ ) ) |
| 64 |
|
0nprm |
⊢ ¬ 0 ∈ ℙ |
| 65 |
64
|
pm2.21i |
⊢ ( 0 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
| 66 |
63 65
|
biimtrdi |
⊢ ( 𝑃 = 0 → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 67 |
62 66
|
biimtrdi |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 = 0 ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 68 |
67
|
com23 |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 = 0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 69 |
68
|
ex |
⊢ ( 𝑏 = 0 → ( 𝑎 = 0 → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
| 70 |
58 69
|
jaod |
⊢ ( 𝑏 = 0 → ( ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
| 71 |
36 70
|
jaoi |
⊢ ( ( 𝑏 ∈ ℕ ∨ 𝑏 = 0 ) → ( ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
| 72 |
3 71
|
sylbi |
⊢ ( 𝑏 ∈ ℕ0 → ( ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
| 73 |
72
|
com12 |
⊢ ( ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) → ( 𝑏 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
| 74 |
2 73
|
sylbi |
⊢ ( 𝑎 ∈ ℕ0 → ( 𝑏 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
| 75 |
74
|
imp |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 76 |
75
|
com12 |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 78 |
77
|
rexlimdvv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 79 |
1 78
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |