| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
| 2 |
|
elnn0z |
⊢ ( 𝑎 ∈ ℕ0 ↔ ( 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) ) |
| 3 |
2
|
biimpri |
⊢ ( ( 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) → 𝑎 ∈ ℕ0 ) |
| 4 |
|
elznn0 |
⊢ ( 𝑎 ∈ ℤ ↔ ( 𝑎 ∈ ℝ ∧ ( 𝑎 ∈ ℕ0 ∨ - 𝑎 ∈ ℕ0 ) ) ) |
| 5 |
|
nn0ge0 |
⊢ ( 𝑎 ∈ ℕ0 → 0 ≤ 𝑎 ) |
| 6 |
5
|
pm2.24d |
⊢ ( 𝑎 ∈ ℕ0 → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝑎 ∈ ℝ → ( 𝑎 ∈ ℕ0 → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) ) |
| 8 |
|
ax-1 |
⊢ ( - 𝑎 ∈ ℕ0 → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) |
| 9 |
8
|
a1i |
⊢ ( 𝑎 ∈ ℝ → ( - 𝑎 ∈ ℕ0 → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) ) |
| 10 |
7 9
|
jaod |
⊢ ( 𝑎 ∈ ℝ → ( ( 𝑎 ∈ ℕ0 ∨ - 𝑎 ∈ ℕ0 ) → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) ) |
| 11 |
10
|
imp |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑎 ∈ ℕ0 ∨ - 𝑎 ∈ ℕ0 ) ) → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) |
| 12 |
4 11
|
sylbi |
⊢ ( 𝑎 ∈ ℤ → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) |
| 13 |
12
|
imp |
⊢ ( ( 𝑎 ∈ ℤ ∧ ¬ 0 ≤ 𝑎 ) → - 𝑎 ∈ ℕ0 ) |
| 14 |
3 13
|
ifclda |
⊢ ( 𝑎 ∈ ℤ → if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ∈ ℕ0 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ∈ ℕ0 ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) → if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ∈ ℕ0 ) |
| 17 |
|
elnn0z |
⊢ ( 𝑏 ∈ ℕ0 ↔ ( 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) ) |
| 18 |
17
|
biimpri |
⊢ ( ( 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) → 𝑏 ∈ ℕ0 ) |
| 19 |
|
elznn0 |
⊢ ( 𝑏 ∈ ℤ ↔ ( 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) ) ) |
| 20 |
|
nn0ge0 |
⊢ ( 𝑏 ∈ ℕ0 → 0 ≤ 𝑏 ) |
| 21 |
20
|
pm2.24d |
⊢ ( 𝑏 ∈ ℕ0 → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) |
| 22 |
21
|
a1i |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 ∈ ℕ0 → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) ) |
| 23 |
|
ax-1 |
⊢ ( - 𝑏 ∈ ℕ0 → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) |
| 24 |
23
|
a1i |
⊢ ( 𝑏 ∈ ℝ → ( - 𝑏 ∈ ℕ0 → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) ) |
| 25 |
22 24
|
jaod |
⊢ ( 𝑏 ∈ ℝ → ( ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) ) |
| 26 |
25
|
imp |
⊢ ( ( 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) ) → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) |
| 27 |
19 26
|
sylbi |
⊢ ( 𝑏 ∈ ℤ → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) |
| 28 |
27
|
imp |
⊢ ( ( 𝑏 ∈ ℤ ∧ ¬ 0 ≤ 𝑏 ) → - 𝑏 ∈ ℕ0 ) |
| 29 |
18 28
|
ifclda |
⊢ ( 𝑏 ∈ ℤ → if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ∈ ℕ0 ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ∈ ℕ0 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) → if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ∈ ℕ0 ) |
| 32 |
|
elznn0nn |
⊢ ( 𝑎 ∈ ℤ ↔ ( 𝑎 ∈ ℕ0 ∨ ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) ) ) |
| 33 |
5
|
iftrued |
⊢ ( 𝑎 ∈ ℕ0 → if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) = 𝑎 ) |
| 34 |
33
|
eqcomd |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 = if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ) |
| 35 |
34
|
oveq1d |
⊢ ( 𝑎 ∈ ℕ0 → ( 𝑎 ↑ 2 ) = ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) ) |
| 36 |
|
elnnz |
⊢ ( - 𝑎 ∈ ℕ ↔ ( - 𝑎 ∈ ℤ ∧ 0 < - 𝑎 ) ) |
| 37 |
|
lt0neg1 |
⊢ ( 𝑎 ∈ ℝ → ( 𝑎 < 0 ↔ 0 < - 𝑎 ) ) |
| 38 |
|
id |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ ) |
| 39 |
|
0red |
⊢ ( 𝑎 ∈ ℝ → 0 ∈ ℝ ) |
| 40 |
38 39
|
ltnled |
⊢ ( 𝑎 ∈ ℝ → ( 𝑎 < 0 ↔ ¬ 0 ≤ 𝑎 ) ) |
| 41 |
40
|
biimpd |
⊢ ( 𝑎 ∈ ℝ → ( 𝑎 < 0 → ¬ 0 ≤ 𝑎 ) ) |
| 42 |
37 41
|
sylbird |
⊢ ( 𝑎 ∈ ℝ → ( 0 < - 𝑎 → ¬ 0 ≤ 𝑎 ) ) |
| 43 |
42
|
com12 |
⊢ ( 0 < - 𝑎 → ( 𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎 ) ) |
| 44 |
36 43
|
simplbiim |
⊢ ( - 𝑎 ∈ ℕ → ( 𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎 ) ) |
| 45 |
44
|
impcom |
⊢ ( ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) → ¬ 0 ≤ 𝑎 ) |
| 46 |
45
|
iffalsed |
⊢ ( ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) → if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) = - 𝑎 ) |
| 47 |
46
|
oveq1d |
⊢ ( ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) → ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) = ( - 𝑎 ↑ 2 ) ) |
| 48 |
|
recn |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℂ ) |
| 49 |
|
sqneg |
⊢ ( 𝑎 ∈ ℂ → ( - 𝑎 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
| 50 |
48 49
|
syl |
⊢ ( 𝑎 ∈ ℝ → ( - 𝑎 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) → ( - 𝑎 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
| 52 |
47 51
|
eqtr2d |
⊢ ( ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) → ( 𝑎 ↑ 2 ) = ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) ) |
| 53 |
35 52
|
jaoi |
⊢ ( ( 𝑎 ∈ ℕ0 ∨ ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) ) → ( 𝑎 ↑ 2 ) = ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) ) |
| 54 |
32 53
|
sylbi |
⊢ ( 𝑎 ∈ ℤ → ( 𝑎 ↑ 2 ) = ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) ) |
| 55 |
|
elznn0nn |
⊢ ( 𝑏 ∈ ℤ ↔ ( 𝑏 ∈ ℕ0 ∨ ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) ) ) |
| 56 |
20
|
iftrued |
⊢ ( 𝑏 ∈ ℕ0 → if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) = 𝑏 ) |
| 57 |
56
|
eqcomd |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 = if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ) |
| 58 |
57
|
oveq1d |
⊢ ( 𝑏 ∈ ℕ0 → ( 𝑏 ↑ 2 ) = ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) |
| 59 |
|
elnnz |
⊢ ( - 𝑏 ∈ ℕ ↔ ( - 𝑏 ∈ ℤ ∧ 0 < - 𝑏 ) ) |
| 60 |
|
lt0neg1 |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 < 0 ↔ 0 < - 𝑏 ) ) |
| 61 |
|
id |
⊢ ( 𝑏 ∈ ℝ → 𝑏 ∈ ℝ ) |
| 62 |
|
0red |
⊢ ( 𝑏 ∈ ℝ → 0 ∈ ℝ ) |
| 63 |
61 62
|
ltnled |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 < 0 ↔ ¬ 0 ≤ 𝑏 ) ) |
| 64 |
63
|
biimpd |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 < 0 → ¬ 0 ≤ 𝑏 ) ) |
| 65 |
60 64
|
sylbird |
⊢ ( 𝑏 ∈ ℝ → ( 0 < - 𝑏 → ¬ 0 ≤ 𝑏 ) ) |
| 66 |
65
|
com12 |
⊢ ( 0 < - 𝑏 → ( 𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏 ) ) |
| 67 |
59 66
|
simplbiim |
⊢ ( - 𝑏 ∈ ℕ → ( 𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏 ) ) |
| 68 |
67
|
impcom |
⊢ ( ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) → ¬ 0 ≤ 𝑏 ) |
| 69 |
68
|
iffalsed |
⊢ ( ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) → if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) = - 𝑏 ) |
| 70 |
69
|
oveq1d |
⊢ ( ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) → ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) = ( - 𝑏 ↑ 2 ) ) |
| 71 |
|
recn |
⊢ ( 𝑏 ∈ ℝ → 𝑏 ∈ ℂ ) |
| 72 |
|
sqneg |
⊢ ( 𝑏 ∈ ℂ → ( - 𝑏 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
| 73 |
71 72
|
syl |
⊢ ( 𝑏 ∈ ℝ → ( - 𝑏 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) → ( - 𝑏 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
| 75 |
70 74
|
eqtr2d |
⊢ ( ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) → ( 𝑏 ↑ 2 ) = ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) |
| 76 |
58 75
|
jaoi |
⊢ ( ( 𝑏 ∈ ℕ0 ∨ ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) ) → ( 𝑏 ↑ 2 ) = ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) |
| 77 |
55 76
|
sylbi |
⊢ ( 𝑏 ∈ ℤ → ( 𝑏 ↑ 2 ) = ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) |
| 78 |
54 77
|
oveqan12d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) |
| 79 |
78
|
eqeq2d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) ) |
| 80 |
79
|
biimpd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) ) |
| 81 |
80
|
imp |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) → 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) |
| 82 |
|
oveq1 |
⊢ ( 𝑥 = if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) → ( 𝑥 ↑ 2 ) = ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) ) |
| 83 |
82
|
oveq1d |
⊢ ( 𝑥 = if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
| 84 |
83
|
eqeq2d |
⊢ ( 𝑥 = if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) → ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 85 |
|
oveq1 |
⊢ ( 𝑦 = if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) → ( 𝑦 ↑ 2 ) = ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝑦 = if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) → ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) |
| 87 |
86
|
eqeq2d |
⊢ ( 𝑦 = if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) → ( 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) ) |
| 88 |
84 87
|
rspc2ev |
⊢ ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ∈ ℕ0 ∧ if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ∈ ℕ0 ∧ 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
| 89 |
16 31 81 88
|
syl3anc |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
| 90 |
89
|
ex |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 91 |
90
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
| 92 |
1 91
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |