Step |
Hyp |
Ref |
Expression |
1 |
|
2sq |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
2 |
|
elnn0z |
⊢ ( 𝑎 ∈ ℕ0 ↔ ( 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) ) |
3 |
2
|
biimpri |
⊢ ( ( 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) → 𝑎 ∈ ℕ0 ) |
4 |
|
elznn0 |
⊢ ( 𝑎 ∈ ℤ ↔ ( 𝑎 ∈ ℝ ∧ ( 𝑎 ∈ ℕ0 ∨ - 𝑎 ∈ ℕ0 ) ) ) |
5 |
|
nn0ge0 |
⊢ ( 𝑎 ∈ ℕ0 → 0 ≤ 𝑎 ) |
6 |
5
|
pm2.24d |
⊢ ( 𝑎 ∈ ℕ0 → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) |
7 |
6
|
a1i |
⊢ ( 𝑎 ∈ ℝ → ( 𝑎 ∈ ℕ0 → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) ) |
8 |
|
ax-1 |
⊢ ( - 𝑎 ∈ ℕ0 → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) |
9 |
8
|
a1i |
⊢ ( 𝑎 ∈ ℝ → ( - 𝑎 ∈ ℕ0 → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) ) |
10 |
7 9
|
jaod |
⊢ ( 𝑎 ∈ ℝ → ( ( 𝑎 ∈ ℕ0 ∨ - 𝑎 ∈ ℕ0 ) → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) ) |
11 |
10
|
imp |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑎 ∈ ℕ0 ∨ - 𝑎 ∈ ℕ0 ) ) → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) |
12 |
4 11
|
sylbi |
⊢ ( 𝑎 ∈ ℤ → ( ¬ 0 ≤ 𝑎 → - 𝑎 ∈ ℕ0 ) ) |
13 |
12
|
imp |
⊢ ( ( 𝑎 ∈ ℤ ∧ ¬ 0 ≤ 𝑎 ) → - 𝑎 ∈ ℕ0 ) |
14 |
3 13
|
ifclda |
⊢ ( 𝑎 ∈ ℤ → if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ∈ ℕ0 ) |
15 |
14
|
adantr |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ∈ ℕ0 ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) → if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ∈ ℕ0 ) |
17 |
|
elnn0z |
⊢ ( 𝑏 ∈ ℕ0 ↔ ( 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) ) |
18 |
17
|
biimpri |
⊢ ( ( 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) → 𝑏 ∈ ℕ0 ) |
19 |
|
elznn0 |
⊢ ( 𝑏 ∈ ℤ ↔ ( 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) ) ) |
20 |
|
nn0ge0 |
⊢ ( 𝑏 ∈ ℕ0 → 0 ≤ 𝑏 ) |
21 |
20
|
pm2.24d |
⊢ ( 𝑏 ∈ ℕ0 → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) |
22 |
21
|
a1i |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 ∈ ℕ0 → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) ) |
23 |
|
ax-1 |
⊢ ( - 𝑏 ∈ ℕ0 → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) |
24 |
23
|
a1i |
⊢ ( 𝑏 ∈ ℝ → ( - 𝑏 ∈ ℕ0 → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) ) |
25 |
22 24
|
jaod |
⊢ ( 𝑏 ∈ ℝ → ( ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) ) |
26 |
25
|
imp |
⊢ ( ( 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) ) → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) |
27 |
19 26
|
sylbi |
⊢ ( 𝑏 ∈ ℤ → ( ¬ 0 ≤ 𝑏 → - 𝑏 ∈ ℕ0 ) ) |
28 |
27
|
imp |
⊢ ( ( 𝑏 ∈ ℤ ∧ ¬ 0 ≤ 𝑏 ) → - 𝑏 ∈ ℕ0 ) |
29 |
18 28
|
ifclda |
⊢ ( 𝑏 ∈ ℤ → if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ∈ ℕ0 ) |
30 |
29
|
adantl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ∈ ℕ0 ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) → if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ∈ ℕ0 ) |
32 |
|
elznn0nn |
⊢ ( 𝑎 ∈ ℤ ↔ ( 𝑎 ∈ ℕ0 ∨ ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) ) ) |
33 |
5
|
iftrued |
⊢ ( 𝑎 ∈ ℕ0 → if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) = 𝑎 ) |
34 |
33
|
eqcomd |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 = if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ) |
35 |
34
|
oveq1d |
⊢ ( 𝑎 ∈ ℕ0 → ( 𝑎 ↑ 2 ) = ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) ) |
36 |
|
elnnz |
⊢ ( - 𝑎 ∈ ℕ ↔ ( - 𝑎 ∈ ℤ ∧ 0 < - 𝑎 ) ) |
37 |
|
lt0neg1 |
⊢ ( 𝑎 ∈ ℝ → ( 𝑎 < 0 ↔ 0 < - 𝑎 ) ) |
38 |
|
id |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ ) |
39 |
|
0red |
⊢ ( 𝑎 ∈ ℝ → 0 ∈ ℝ ) |
40 |
38 39
|
ltnled |
⊢ ( 𝑎 ∈ ℝ → ( 𝑎 < 0 ↔ ¬ 0 ≤ 𝑎 ) ) |
41 |
40
|
biimpd |
⊢ ( 𝑎 ∈ ℝ → ( 𝑎 < 0 → ¬ 0 ≤ 𝑎 ) ) |
42 |
37 41
|
sylbird |
⊢ ( 𝑎 ∈ ℝ → ( 0 < - 𝑎 → ¬ 0 ≤ 𝑎 ) ) |
43 |
42
|
com12 |
⊢ ( 0 < - 𝑎 → ( 𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎 ) ) |
44 |
36 43
|
simplbiim |
⊢ ( - 𝑎 ∈ ℕ → ( 𝑎 ∈ ℝ → ¬ 0 ≤ 𝑎 ) ) |
45 |
44
|
impcom |
⊢ ( ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) → ¬ 0 ≤ 𝑎 ) |
46 |
45
|
iffalsed |
⊢ ( ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) → if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) = - 𝑎 ) |
47 |
46
|
oveq1d |
⊢ ( ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) → ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) = ( - 𝑎 ↑ 2 ) ) |
48 |
|
recn |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℂ ) |
49 |
|
sqneg |
⊢ ( 𝑎 ∈ ℂ → ( - 𝑎 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
50 |
48 49
|
syl |
⊢ ( 𝑎 ∈ ℝ → ( - 𝑎 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) → ( - 𝑎 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
52 |
47 51
|
eqtr2d |
⊢ ( ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) → ( 𝑎 ↑ 2 ) = ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) ) |
53 |
35 52
|
jaoi |
⊢ ( ( 𝑎 ∈ ℕ0 ∨ ( 𝑎 ∈ ℝ ∧ - 𝑎 ∈ ℕ ) ) → ( 𝑎 ↑ 2 ) = ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) ) |
54 |
32 53
|
sylbi |
⊢ ( 𝑎 ∈ ℤ → ( 𝑎 ↑ 2 ) = ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) ) |
55 |
|
elznn0nn |
⊢ ( 𝑏 ∈ ℤ ↔ ( 𝑏 ∈ ℕ0 ∨ ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) ) ) |
56 |
20
|
iftrued |
⊢ ( 𝑏 ∈ ℕ0 → if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) = 𝑏 ) |
57 |
56
|
eqcomd |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 = if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ) |
58 |
57
|
oveq1d |
⊢ ( 𝑏 ∈ ℕ0 → ( 𝑏 ↑ 2 ) = ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) |
59 |
|
elnnz |
⊢ ( - 𝑏 ∈ ℕ ↔ ( - 𝑏 ∈ ℤ ∧ 0 < - 𝑏 ) ) |
60 |
|
lt0neg1 |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 < 0 ↔ 0 < - 𝑏 ) ) |
61 |
|
id |
⊢ ( 𝑏 ∈ ℝ → 𝑏 ∈ ℝ ) |
62 |
|
0red |
⊢ ( 𝑏 ∈ ℝ → 0 ∈ ℝ ) |
63 |
61 62
|
ltnled |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 < 0 ↔ ¬ 0 ≤ 𝑏 ) ) |
64 |
63
|
biimpd |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 < 0 → ¬ 0 ≤ 𝑏 ) ) |
65 |
60 64
|
sylbird |
⊢ ( 𝑏 ∈ ℝ → ( 0 < - 𝑏 → ¬ 0 ≤ 𝑏 ) ) |
66 |
65
|
com12 |
⊢ ( 0 < - 𝑏 → ( 𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏 ) ) |
67 |
59 66
|
simplbiim |
⊢ ( - 𝑏 ∈ ℕ → ( 𝑏 ∈ ℝ → ¬ 0 ≤ 𝑏 ) ) |
68 |
67
|
impcom |
⊢ ( ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) → ¬ 0 ≤ 𝑏 ) |
69 |
68
|
iffalsed |
⊢ ( ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) → if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) = - 𝑏 ) |
70 |
69
|
oveq1d |
⊢ ( ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) → ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) = ( - 𝑏 ↑ 2 ) ) |
71 |
|
recn |
⊢ ( 𝑏 ∈ ℝ → 𝑏 ∈ ℂ ) |
72 |
|
sqneg |
⊢ ( 𝑏 ∈ ℂ → ( - 𝑏 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
73 |
71 72
|
syl |
⊢ ( 𝑏 ∈ ℝ → ( - 𝑏 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
74 |
73
|
adantr |
⊢ ( ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) → ( - 𝑏 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
75 |
70 74
|
eqtr2d |
⊢ ( ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) → ( 𝑏 ↑ 2 ) = ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) |
76 |
58 75
|
jaoi |
⊢ ( ( 𝑏 ∈ ℕ0 ∨ ( 𝑏 ∈ ℝ ∧ - 𝑏 ∈ ℕ ) ) → ( 𝑏 ↑ 2 ) = ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) |
77 |
55 76
|
sylbi |
⊢ ( 𝑏 ∈ ℤ → ( 𝑏 ↑ 2 ) = ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) |
78 |
54 77
|
oveqan12d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) |
79 |
78
|
eqeq2d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) ) |
80 |
79
|
biimpd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) ) |
81 |
80
|
imp |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) → 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) |
82 |
|
oveq1 |
⊢ ( 𝑥 = if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) → ( 𝑥 ↑ 2 ) = ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) ) |
83 |
82
|
oveq1d |
⊢ ( 𝑥 = if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
84 |
83
|
eqeq2d |
⊢ ( 𝑥 = if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) → ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
85 |
|
oveq1 |
⊢ ( 𝑦 = if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) → ( 𝑦 ↑ 2 ) = ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) |
86 |
85
|
oveq2d |
⊢ ( 𝑦 = if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) → ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) |
87 |
86
|
eqeq2d |
⊢ ( 𝑦 = if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) → ( 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) ) |
88 |
84 87
|
rspc2ev |
⊢ ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ∈ ℕ0 ∧ if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ∈ ℕ0 ∧ 𝑃 = ( ( if ( 0 ≤ 𝑎 , 𝑎 , - 𝑎 ) ↑ 2 ) + ( if ( 0 ≤ 𝑏 , 𝑏 , - 𝑏 ) ↑ 2 ) ) ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
89 |
16 31 81 88
|
syl3anc |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
90 |
89
|
ex |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
91 |
90
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
92 |
1 91
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |