Metamath Proof Explorer


Theorem 2sqreuopb

Description: There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4 k + 1 . Alternate ordered pair variant of 2sqreunnltb . (Contributed by AV, 3-Jul-2023)

Ref Expression
Assertion 2sqreuopb PPmod4=1∃!p×abp=aba<ba2+b2=P

Proof

Step Hyp Ref Expression
1 2sqreuopnnltb PPmod4=1∃!p×1stp<2ndp1stp2+2ndp2=P
2 breq12 a=1stpb=2ndpa<b1stp<2ndp
3 simpl a=1stpb=2ndpa=1stp
4 3 oveq1d a=1stpb=2ndpa2=1stp2
5 simpr a=1stpb=2ndpb=2ndp
6 5 oveq1d a=1stpb=2ndpb2=2ndp2
7 4 6 oveq12d a=1stpb=2ndpa2+b2=1stp2+2ndp2
8 7 eqeq1d a=1stpb=2ndpa2+b2=P1stp2+2ndp2=P
9 2 8 anbi12d a=1stpb=2ndpa<ba2+b2=P1stp<2ndp1stp2+2ndp2=P
10 9 opreuopreu ∃!p×1stp<2ndp1stp2+2ndp2=P∃!p×abp=aba<ba2+b2=P
11 1 10 bitrdi PPmod4=1∃!p×abp=aba<ba2+b2=P