Metamath Proof Explorer


Theorem 2zrngaabl

Description: R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
Assertion 2zrngaabl R Abel

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 1 2 2zrngagrp R Grp
4 1 2 2zrngacmnd R CMnd
5 3 4 pm3.2i R Grp R CMnd
6 isabl R Abel R Grp R CMnd
7 5 6 mpbir R Abel