Description: R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2zrng.e | ||
2zrngbas.r | |||
Assertion | 2zrngaabl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | ||
2 | 2zrngbas.r | ||
3 | 1 2 | 2zrngagrp | |
4 | 1 2 | 2zrngacmnd | |
5 | 3 4 | pm3.2i | |
6 | isabl | ||
7 | 5 6 | mpbir |