Metamath Proof Explorer


Theorem 2zrngbas

Description: The base set of R is the set of all even integers. (Contributed by AV, 31-Jan-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
Assertion 2zrngbas E = Base R

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 ssrab2 z | x z = 2 x
4 zsscn
5 3 4 sstri z | x z = 2 x
6 1 5 eqsstri E
7 2 cnfldsrngbas E E = Base R
8 6 7 ax-mp E = Base R