Metamath Proof Explorer


Theorem 341fppr2

Description: 341 is the (smallest)Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023)

Ref Expression
Assertion 341fppr2 341 FPPr 2

Proof

Step Hyp Ref Expression
1 4z 4
2 3nn0 3 0
3 4nn0 4 0
4 2 3 deccl 34 0
5 1nn 1
6 4 5 decnncl 341
7 6 nnzi 341
8 4nn 4
9 2 8 decnncl 34
10 1nn0 1 0
11 4re 4
12 9re 9
13 4lt9 4 < 9
14 11 12 13 ltleii 4 9
15 9 10 3 14 declei 4 341
16 eluz2 341 4 4 341 4 341
17 1 7 15 16 mpbir3an 341 4
18 2z 2
19 10 5 decnncl 11
20 19 nnzi 11
21 2nn0 2 0
22 2re 2
23 2lt9 2 < 9
24 22 12 23 ltleii 2 9
25 5 10 21 24 declei 2 11
26 eluz2 11 2 2 11 2 11
27 18 20 25 26 mpbir3an 11 2
28 2 5 decnncl 31
29 28 nnzi 31
30 3nn 3
31 30 10 21 24 declei 2 31
32 eluz2 31 2 2 31 2 31
33 18 29 31 32 mpbir3an 31 2
34 nprm 11 2 31 2 ¬ 11 31
35 27 33 34 mp2an ¬ 11 31
36 df-nel 341 ¬ 341
37 11t31e341 11 31 = 341
38 37 eqcomi 341 = 11 31
39 38 eleq1i 341 11 31
40 36 39 xchbinx 341 ¬ 11 31
41 35 40 mpbir 341
42 eqid 341 = 341
43 eqid 34 + 1 = 34 + 1
44 1m1e0 1 1 = 0
45 4 10 10 42 43 44 decsubi 341 1 = 340
46 45 oveq2i 2 341 1 = 2 340
47 46 oveq1i 2 341 1 mod 341 = 2 340 mod 341
48 2exp340mod341 2 340 mod 341 = 1
49 47 48 eqtri 2 341 1 mod 341 = 1
50 2nn 2
51 fpprel 2 341 FPPr 2 341 4 341 2 341 1 mod 341 = 1
52 50 51 ax-mp 341 FPPr 2 341 4 341 2 341 1 mod 341 = 1
53 17 41 49 52 mpbir3an 341 FPPr 2