Metamath Proof Explorer


Theorem 3atlem4

Description: Lemma for 3at . (Contributed by NM, 23-Jun-2012)

Ref Expression
Hypotheses 3at.l ˙=K
3at.j ˙=joinK
3at.a A=AtomsK
Assertion 3atlem4 KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RP˙Q˙R=S˙T˙R

Proof

Step Hyp Ref Expression
1 3at.l ˙=K
2 3at.j ˙=joinK
3 3at.a A=AtomsK
4 simp11 KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RKHL
5 simp12 KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RPAQARA
6 simp13l KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RSA
7 simp13r KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RTA
8 simp123 KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RRA
9 6 7 8 3jca KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RSATARA
10 simp2l KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙R¬R˙P˙Q
11 4 hllatd KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RKLat
12 eqid BaseK=BaseK
13 12 3 atbase RARBaseK
14 8 13 syl KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RRBaseK
15 simp121 KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RPA
16 12 3 atbase PAPBaseK
17 15 16 syl KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RPBaseK
18 simp122 KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RQA
19 12 3 atbase QAQBaseK
20 18 19 syl KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RQBaseK
21 12 1 2 latnlej1l KLatRBaseKPBaseKQBaseK¬R˙P˙QRP
22 11 14 17 20 10 21 syl131anc KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RRP
23 22 necomd KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RPR
24 simp2r KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RPQ
25 24 necomd KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RQP
26 1 2 3 hlatexch1 KHLQARAPAQPQ˙P˙RR˙P˙Q
27 4 18 8 15 25 26 syl131anc KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RQ˙P˙RR˙P˙Q
28 10 27 mtod KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙R¬Q˙P˙R
29 simp3 KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RP˙Q˙R˙S˙T˙R
30 1 2 3 3atlem3 KHLPAQARASATARA¬R˙P˙QPR¬Q˙P˙RP˙Q˙R˙S˙T˙RP˙Q˙R=S˙T˙R
31 4 5 9 10 23 28 29 30 syl331anc KHLPAQARASATA¬R˙P˙QPQP˙Q˙R˙S˙T˙RP˙Q˙R=S˙T˙R