Metamath Proof Explorer


Theorem 3bitr4d

Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995)

Ref Expression
Hypotheses 3bitr4d.1 φ ψ χ
3bitr4d.2 φ θ ψ
3bitr4d.3 φ τ χ
Assertion 3bitr4d φ θ τ

Proof

Step Hyp Ref Expression
1 3bitr4d.1 φ ψ χ
2 3bitr4d.2 φ θ ψ
3 3bitr4d.3 φ τ χ
4 1 3 bitr4d φ ψ τ
5 2 4 bitrd φ θ τ