Metamath Proof Explorer


Theorem 3dim1lem5

Description: Lemma for 3dim1 . (Contributed by NM, 26-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙=joinK
3dim0.l ˙=K
3dim0.a A=AtomsK
Assertion 3dim1lem5 uAvAwAPu¬v˙P˙u¬w˙P˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r

Proof

Step Hyp Ref Expression
1 3dim0.j ˙=joinK
2 3dim0.l ˙=K
3 3dim0.a A=AtomsK
4 neeq2 q=uPqPu
5 oveq2 q=uP˙q=P˙u
6 5 breq2d q=ur˙P˙qr˙P˙u
7 6 notbid q=u¬r˙P˙q¬r˙P˙u
8 5 oveq1d q=uP˙q˙r=P˙u˙r
9 8 breq2d q=us˙P˙q˙rs˙P˙u˙r
10 9 notbid q=u¬s˙P˙q˙r¬s˙P˙u˙r
11 4 7 10 3anbi123d q=uPq¬r˙P˙q¬s˙P˙q˙rPu¬r˙P˙u¬s˙P˙u˙r
12 breq1 r=vr˙P˙uv˙P˙u
13 12 notbid r=v¬r˙P˙u¬v˙P˙u
14 oveq2 r=vP˙u˙r=P˙u˙v
15 14 breq2d r=vs˙P˙u˙rs˙P˙u˙v
16 15 notbid r=v¬s˙P˙u˙r¬s˙P˙u˙v
17 13 16 3anbi23d r=vPu¬r˙P˙u¬s˙P˙u˙rPu¬v˙P˙u¬s˙P˙u˙v
18 breq1 s=ws˙P˙u˙vw˙P˙u˙v
19 18 notbid s=w¬s˙P˙u˙v¬w˙P˙u˙v
20 19 3anbi3d s=wPu¬v˙P˙u¬s˙P˙u˙vPu¬v˙P˙u¬w˙P˙u˙v
21 11 17 20 rspc3ev uAvAwAPu¬v˙P˙u¬w˙P˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r