Metamath Proof Explorer


Theorem 3eltr4d

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr4d.1 φAB
3eltr4d.2 φC=A
3eltr4d.3 φD=B
Assertion 3eltr4d φCD

Proof

Step Hyp Ref Expression
1 3eltr4d.1 φAB
2 3eltr4d.2 φC=A
3 3eltr4d.3 φD=B
4 1 3 eleqtrrd φAD
5 2 4 eqeltrd φCD