Metamath Proof Explorer


Theorem 3oai

Description: 3OA (weak) orthoarguesian law. Equation IV of GodowskiGreechie p. 249. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses 3oa.1 A C
3oa.2 B C
3oa.3 C C
3oa.4 R = B B A
3oa.5 S = C C A
Assertion 3oai B R C S B R S B C R S

Proof

Step Hyp Ref Expression
1 3oa.1 A C
2 3oa.2 B C
3 3oa.3 C C
4 3oa.4 R = B B A
5 3oa.5 S = C C A
6 1 2 3 4 5 3oalem5 B + R C + S = B R C S
7 2 choccli B C
8 2 1 chjcli B A C
9 7 8 chincli B B A C
10 4 9 eqeltri R C
11 3 choccli C C
12 3 1 chjcli C A C
13 11 12 chincli C C A C
14 5 13 eqeltri S C
15 2 3 10 14 3oalem3 B + R C + S B + R S + B + C R + S
16 1 2 3 4 5 3oalem6 B + R S + B + C R + S B R S B C R S
17 15 16 sstri B + R C + S B R S B C R S
18 6 17 eqsstrri B R C S B R S B C R S