Metamath Proof Explorer


Theorem 3pthd

Description: A path of length 3 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 10-Feb-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
3wlkd.v V=VtxG
3wlkd.i I=iEdgG
3trld.n φJKJLKL
Assertion 3pthd φFPathsGP

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 3wlkd.v V=VtxG
7 3wlkd.i I=iEdgG
8 3trld.n φJKJLKL
9 s4cli ⟨“ABCD”⟩WordV
10 1 9 eqeltri PWordV
11 10 a1i φPWordV
12 2 fveq2i F=⟨“JKL”⟩
13 s3len ⟨“JKL”⟩=3
14 12 13 eqtri F=3
15 4m1e3 41=3
16 1 fveq2i P=⟨“ABCD”⟩
17 s4len ⟨“ABCD”⟩=4
18 16 17 eqtr2i 4=P
19 18 oveq1i 41=P1
20 14 15 19 3eqtr2i F=P1
21 1 2 3 4 3pthdlem1 φk0..^Pj1..^FkjPkPj
22 eqid F=F
23 1 2 3 4 5 6 7 8 3trld φFTrailsGP
24 11 20 21 22 23 pthd φFPathsGP