Metamath Proof Explorer


Theorem 3reeanv

Description: Rearrange three restricted existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010)

Ref Expression
Assertion 3reeanv xAyBzCφψχxAφyBψzCχ

Proof

Step Hyp Ref Expression
1 r19.41v xAyBφψzCχxAyBφψzCχ
2 reeanv xAyBφψxAφyBψ
3 2 anbi1i xAyBφψzCχxAφyBψzCχ
4 1 3 bitri xAyBφψzCχxAφyBψzCχ
5 df-3an φψχφψχ
6 5 2rexbii yBzCφψχyBzCφψχ
7 reeanv yBzCφψχyBφψzCχ
8 6 7 bitri yBzCφψχyBφψzCχ
9 8 rexbii xAyBzCφψχxAyBφψzCχ
10 df-3an xAφyBψzCχxAφyBψzCχ
11 4 9 10 3bitr4i xAyBzCφψχxAφyBψzCχ