Metamath Proof Explorer


Theorem 3wlkd

Description: Construction of a walk from two given edges in a graph. (Contributed by AV, 7-Feb-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
3wlkd.v V=VtxG
3wlkd.i I=iEdgG
Assertion 3wlkd φFWalksGP

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 3wlkd.v V=VtxG
7 3wlkd.i I=iEdgG
8 s4cli ⟨“ABCD”⟩WordV
9 1 8 eqeltri PWordV
10 9 a1i φPWordV
11 s3cli ⟨“JKL”⟩WordV
12 2 11 eqeltri FWordV
13 12 a1i φFWordV
14 1 2 3wlkdlem1 P=F+1
15 14 a1i φP=F+1
16 1 2 3 4 5 3wlkdlem10 φk0..^FPkPk+1IFk
17 1 2 3 4 3wlkdlem5 φk0..^FPkPk+1
18 6 1vgrex AVGV
19 18 ad2antrr AVBVCVDVGV
20 3 19 syl φGV
21 1 2 3 3wlkdlem4 φk0FPkV
22 10 13 15 16 17 20 6 7 21 wlkd φFWalksGP