Database
GRAPH THEORY
Walks, paths and cycles
Walks
wlkd
Next ⟩
Walks for loop-free graphs
Metamath Proof Explorer
Ascii
Unicode
Theorem
wlkd
Description:
Two words representing a walk in a graph.
(Contributed by
AV
, 7-Feb-2021)
Ref
Expression
Hypotheses
wlkd.p
⊢
φ
→
P
∈
Word
V
wlkd.f
⊢
φ
→
F
∈
Word
V
wlkd.l
⊢
φ
→
P
=
F
+
1
wlkd.e
⊢
φ
→
∀
k
∈
0
..^
F
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
wlkd.n
⊢
φ
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
wlkd.g
⊢
φ
→
G
∈
W
wlkd.v
⊢
V
=
Vtx
⁡
G
wlkd.i
⊢
I
=
iEdg
⁡
G
wlkd.a
⊢
φ
→
∀
k
∈
0
…
F
P
⁡
k
∈
V
Assertion
wlkd
⊢
φ
→
F
Walks
⁡
G
P
Proof
Step
Hyp
Ref
Expression
1
wlkd.p
⊢
φ
→
P
∈
Word
V
2
wlkd.f
⊢
φ
→
F
∈
Word
V
3
wlkd.l
⊢
φ
→
P
=
F
+
1
4
wlkd.e
⊢
φ
→
∀
k
∈
0
..^
F
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
5
wlkd.n
⊢
φ
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
6
wlkd.g
⊢
φ
→
G
∈
W
7
wlkd.v
⊢
V
=
Vtx
⁡
G
8
wlkd.i
⊢
I
=
iEdg
⁡
G
9
wlkd.a
⊢
φ
→
∀
k
∈
0
…
F
P
⁡
k
∈
V
10
1
2
3
4
wlkdlem3
⊢
φ
→
F
∈
Word
dom
⁡
I
11
1
2
3
9
wlkdlem1
⊢
φ
→
P
:
0
…
F
⟶
V
12
1
2
3
4
5
wlkdlem4
⊢
φ
→
∀
k
∈
0
..^
F
if-
P
⁡
k
=
P
⁡
k
+
1
I
⁡
F
⁡
k
=
P
⁡
k
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
13
7
8
iswlk
⊢
G
∈
W
∧
F
∈
Word
V
∧
P
∈
Word
V
→
F
Walks
⁡
G
P
↔
F
∈
Word
dom
⁡
I
∧
P
:
0
…
F
⟶
V
∧
∀
k
∈
0
..^
F
if-
P
⁡
k
=
P
⁡
k
+
1
I
⁡
F
⁡
k
=
P
⁡
k
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
14
6
2
1
13
syl3anc
⊢
φ
→
F
Walks
⁡
G
P
↔
F
∈
Word
dom
⁡
I
∧
P
:
0
…
F
⟶
V
∧
∀
k
∈
0
..^
F
if-
P
⁡
k
=
P
⁡
k
+
1
I
⁡
F
⁡
k
=
P
⁡
k
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
15
10
11
12
14
mpbir3and
⊢
φ
→
F
Walks
⁡
G
P