Metamath Proof Explorer


Theorem wlkd

Description: Two words representing a walk in a graph. (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses wlkd.p φPWordV
wlkd.f φFWordV
wlkd.l φP=F+1
wlkd.e φk0..^FPkPk+1IFk
wlkd.n φk0..^FPkPk+1
wlkd.g φGW
wlkd.v V=VtxG
wlkd.i I=iEdgG
wlkd.a φk0FPkV
Assertion wlkd φFWalksGP

Proof

Step Hyp Ref Expression
1 wlkd.p φPWordV
2 wlkd.f φFWordV
3 wlkd.l φP=F+1
4 wlkd.e φk0..^FPkPk+1IFk
5 wlkd.n φk0..^FPkPk+1
6 wlkd.g φGW
7 wlkd.v V=VtxG
8 wlkd.i I=iEdgG
9 wlkd.a φk0FPkV
10 1 2 3 4 wlkdlem3 φFWorddomI
11 1 2 3 9 wlkdlem1 φP:0FV
12 1 2 3 4 5 wlkdlem4 φk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
13 7 8 iswlk GWFWordVPWordVFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
14 6 2 1 13 syl3anc φFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
15 10 11 12 14 mpbir3and φFWalksGP