Metamath Proof Explorer


Theorem wlkdlem1

Description: Lemma 1 for wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses wlkd.p φPWordV
wlkd.f φFWordV
wlkd.l φP=F+1
wlkdlem1.v φk0FPkV
Assertion wlkdlem1 φP:0FV

Proof

Step Hyp Ref Expression
1 wlkd.p φPWordV
2 wlkd.f φFWordV
3 wlkd.l φP=F+1
4 wlkdlem1.v φk0FPkV
5 wrdf PWordVP:0..^PV
6 1 5 syl φP:0..^PV
7 3 oveq2d φ0..^P=0..^F+1
8 lencl FWordVF0
9 2 8 syl φF0
10 9 nn0zd φF
11 fzval3 F0F=0..^F+1
12 10 11 syl φ0F=0..^F+1
13 7 12 eqtr4d φ0..^P=0F
14 13 feq2d φP:0..^PVP:0FV
15 ssv VV
16 fcdmssb VVk0FPkVP:0FVP:0FV
17 15 4 16 sylancr φP:0FVP:0FV
18 14 17 bitrd φP:0..^PVP:0FV
19 6 18 mpbid φP:0FV