Metamath Proof Explorer


Theorem wlkdlem3

Description: Lemma 3 for wlkd . (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 7-Feb-2021)

Ref Expression
Hypotheses wlkd.p φPWordV
wlkd.f φFWordV
wlkd.l φP=F+1
wlkd.e φk0..^FPkPk+1IFk
Assertion wlkdlem3 φFWorddomI

Proof

Step Hyp Ref Expression
1 wlkd.p φPWordV
2 wlkd.f φFWordV
3 wlkd.l φP=F+1
4 wlkd.e φk0..^FPkPk+1IFk
5 1 2 3 4 wlkdlem2 φFPFIFF1k0..^FPkIFk
6 elfvdm PkIFkFkdomI
7 6 ralimi k0..^FPkIFkk0..^FFkdomI
8 5 7 simpl2im φk0..^FFkdomI
9 iswrdsymb FWordVk0..^FFkdomIFWorddomI
10 2 8 9 syl2anc φFWorddomI