Metamath Proof Explorer


Theorem wlkdlem3

Description: Lemma 3 for wlkd . (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 7-Feb-2021)

Ref Expression
Hypotheses wlkd.p φ P Word V
wlkd.f φ F Word V
wlkd.l φ P = F + 1
wlkd.e φ k 0 ..^ F P k P k + 1 I F k
Assertion wlkdlem3 φ F Word dom I

Proof

Step Hyp Ref Expression
1 wlkd.p φ P Word V
2 wlkd.f φ F Word V
3 wlkd.l φ P = F + 1
4 wlkd.e φ k 0 ..^ F P k P k + 1 I F k
5 1 2 3 4 wlkdlem2 φ F P F I F F 1 k 0 ..^ F P k I F k
6 elfvdm P k I F k F k dom I
7 6 ralimi k 0 ..^ F P k I F k k 0 ..^ F F k dom I
8 5 7 simpl2im φ k 0 ..^ F F k dom I
9 iswrdsymb F Word V k 0 ..^ F F k dom I F Word dom I
10 2 8 9 syl2anc φ F Word dom I