Metamath Proof Explorer


Theorem 420gcd8e4

Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion 420gcd8e4 420gcd8=4

Proof

Step Hyp Ref Expression
1 8nn 8
2 4nn 4
3 5nn0 50
4 2nn 2
5 3 4 decnncl 52
6 5 nnzi 52
7 1 2 6 gcdaddmzz2nncomi 8gcd4=8gcd528+4
8 4nn0 40
9 1nn0 10
10 8 9 deccl 410
11 6nn0 60
12 0nn0 00
13 eqid 416=416
14 8 dec0h 4=04
15 1p1e2 1+1=2
16 10 nn0cni 41
17 16 addridi 41+0=41
18 8 9 15 17 decsuc 41+0+1=42
19 6p4e10 6+4=10
20 10 11 12 8 13 14 18 19 decaddc2 416+4=420
21 8nn0 80
22 2nn0 20
23 eqid 52=52
24 0p1e1 0+1=1
25 8t5e40 85=40
26 8 12 24 25 decsuc 85+1=41
27 8t2e16 82=16
28 21 3 22 23 11 9 26 27 decmul2c 852=416
29 1 5 mulcomnni 852=528
30 28 29 eqtr3i 416=528
31 30 oveq1i 416+4=528+4
32 20 31 eqtr3i 420=528+4
33 32 oveq2i 8gcd420=8gcd528+4
34 7 33 eqtr4i 8gcd4=8gcd420
35 1 2 gcdcomnni 8gcd4=4gcd8
36 4t2e8 42=8
37 36 oveq2i 4gcd42=4gcd8
38 2 4 gcdmultiplei 4gcd42=4
39 37 38 eqtr3i 4gcd8=4
40 35 39 eqtri 8gcd4=4
41 8 4 decnncl 42
42 41 decnncl2 420
43 1 42 gcdcomnni 8gcd420=420gcd8
44 34 40 43 3eqtr3ri 420gcd8=4