Metamath Proof Explorer


Theorem 4atexlempsb

Description: Lemma for 4atexlem7 . (Contributed by NM, 23-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlempqb.j ˙=joinK
4thatlempqb.a A=AtomsK
Assertion 4atexlempsb φP˙SBaseK

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlempqb.j ˙=joinK
3 4thatlempqb.a A=AtomsK
4 1 4atexlemk φKHL
5 1 4atexlemp φPA
6 1 4atexlems φSA
7 eqid BaseK=BaseK
8 7 2 3 hlatjcl KHLPASAP˙SBaseK
9 4 5 6 8 syl3anc φP˙SBaseK