Metamath Proof Explorer


Theorem 4atexlemqtb

Description: Lemma for 4atexlem7 . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlempqb.j ˙=joinK
4thatlempqb.a A=AtomsK
Assertion 4atexlemqtb φQ˙TBaseK

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlempqb.j ˙=joinK
3 4thatlempqb.a A=AtomsK
4 1 4atexlemk φKHL
5 1 4atexlemq φQA
6 1 4atexlemt φTA
7 eqid BaseK=BaseK
8 7 2 3 hlatjcl KHLQATAQ˙TBaseK
9 4 5 6 8 syl3anc φQ˙TBaseK