Metamath Proof Explorer


Theorem 4atexlemwb

Description: Lemma for 4atexlem7 . (Contributed by NM, 23-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlemmwb.h H=LHypK
Assertion 4atexlemwb φWBaseK

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlemmwb.h H=LHypK
3 1 4atexlemw φWH
4 eqid BaseK=BaseK
5 4 2 lhpbase WHWBaseK
6 3 5 syl φWBaseK