Metamath Proof Explorer


Theorem ablnnncan

Description: Cancellation law for group subtraction. ( nnncan analog.) (Contributed by NM, 29-Feb-2008) (Revised by AV, 27-Aug-2021)

Ref Expression
Hypotheses ablnncan.b B=BaseG
ablnncan.m -˙=-G
ablnncan.g φGAbel
ablnncan.x φXB
ablnncan.y φYB
ablsub32.z φZB
Assertion ablnnncan φX-˙Y-˙Z-˙Z=X-˙Y

Proof

Step Hyp Ref Expression
1 ablnncan.b B=BaseG
2 ablnncan.m -˙=-G
3 ablnncan.g φGAbel
4 ablnncan.x φXB
5 ablnncan.y φYB
6 ablsub32.z φZB
7 eqid +G=+G
8 ablgrp GAbelGGrp
9 3 8 syl φGGrp
10 1 2 grpsubcl GGrpYBZBY-˙ZB
11 9 5 6 10 syl3anc φY-˙ZB
12 1 7 2 3 4 11 6 ablsubsub4 φX-˙Y-˙Z-˙Z=X-˙Y-˙Z+GZ
13 1 7 ablcom GAbelY-˙ZBZBY-˙Z+GZ=Z+GY-˙Z
14 3 11 6 13 syl3anc φY-˙Z+GZ=Z+GY-˙Z
15 1 7 2 ablpncan3 GAbelZBYBZ+GY-˙Z=Y
16 3 6 5 15 syl12anc φZ+GY-˙Z=Y
17 14 16 eqtrd φY-˙Z+GZ=Y
18 17 oveq2d φX-˙Y-˙Z+GZ=X-˙Y
19 12 18 eqtrd φX-˙Y-˙Z-˙Z=X-˙Y