Metamath Proof Explorer


Theorem ablodiv32

Description: Swap the second and third terms in a double division. (Contributed by NM, 29-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X=ranG
abldiv.3 D=/gG
Assertion ablodiv32 GAbelOpAXBXCXADBDC=ADCDB

Proof

Step Hyp Ref Expression
1 abldiv.1 X=ranG
2 abldiv.3 D=/gG
3 1 ablocom GAbelOpBXCXBGC=CGB
4 3 3adant3r1 GAbelOpAXBXCXBGC=CGB
5 4 oveq2d GAbelOpAXBXCXADBGC=ADCGB
6 1 2 ablodivdiv4 GAbelOpAXBXCXADBDC=ADBGC
7 3ancomb AXBXCXAXCXBX
8 1 2 ablodivdiv4 GAbelOpAXCXBXADCDB=ADCGB
9 7 8 sylan2b GAbelOpAXBXCXADCDB=ADCGB
10 5 6 9 3eqtr4d GAbelOpAXBXCXADBDC=ADCDB