Metamath Proof Explorer


Theorem ablodivdiv4

Description: Law for double group division. (Contributed by NM, 29-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X = ran G
abldiv.3 D = / g G
Assertion ablodivdiv4 G AbelOp A X B X C X A D B D C = A D B G C

Proof

Step Hyp Ref Expression
1 abldiv.1 X = ran G
2 abldiv.3 D = / g G
3 ablogrpo G AbelOp G GrpOp
4 simpl G GrpOp A X B X C X G GrpOp
5 1 2 grpodivcl G GrpOp A X B X A D B X
6 5 3adant3r3 G GrpOp A X B X C X A D B X
7 simpr3 G GrpOp A X B X C X C X
8 eqid inv G = inv G
9 1 8 2 grpodivval G GrpOp A D B X C X A D B D C = A D B G inv G C
10 4 6 7 9 syl3anc G GrpOp A X B X C X A D B D C = A D B G inv G C
11 3 10 sylan G AbelOp A X B X C X A D B D C = A D B G inv G C
12 simpr1 G AbelOp A X B X C X A X
13 simpr2 G AbelOp A X B X C X B X
14 simp3 A X B X C X C X
15 1 8 grpoinvcl G GrpOp C X inv G C X
16 3 14 15 syl2an G AbelOp A X B X C X inv G C X
17 12 13 16 3jca G AbelOp A X B X C X A X B X inv G C X
18 1 2 ablodivdiv G AbelOp A X B X inv G C X A D B D inv G C = A D B G inv G C
19 17 18 syldan G AbelOp A X B X C X A D B D inv G C = A D B G inv G C
20 1 8 2 grpodivinv G GrpOp B X C X B D inv G C = B G C
21 3 20 syl3an1 G AbelOp B X C X B D inv G C = B G C
22 21 3adant3r1 G AbelOp A X B X C X B D inv G C = B G C
23 22 oveq2d G AbelOp A X B X C X A D B D inv G C = A D B G C
24 11 19 23 3eqtr2d G AbelOp A X B X C X A D B D C = A D B G C