Metamath Proof Explorer


Theorem ablsimpg1gend

Description: An abelian simple group is generated by any non-identity element. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpg1gend.1 B = Base G
ablsimpg1gend.2 0 ˙ = 0 G
ablsimpg1gend.3 · ˙ = G
ablsimpg1gend.4 φ G Abel
ablsimpg1gend.5 φ G SimpGrp
ablsimpg1gend.6 φ A B
ablsimpg1gend.7 φ ¬ A = 0 ˙
ablsimpg1gend.8 φ C B
Assertion ablsimpg1gend φ n C = n · ˙ A

Proof

Step Hyp Ref Expression
1 ablsimpg1gend.1 B = Base G
2 ablsimpg1gend.2 0 ˙ = 0 G
3 ablsimpg1gend.3 · ˙ = G
4 ablsimpg1gend.4 φ G Abel
5 ablsimpg1gend.5 φ G SimpGrp
6 ablsimpg1gend.6 φ A B
7 ablsimpg1gend.7 φ ¬ A = 0 ˙
8 ablsimpg1gend.8 φ C B
9 eqid n n · ˙ A = n n · ˙ A
10 5 simpggrpd φ G Grp
11 1 3 9 10 6 cycsubgcld φ ran n n · ˙ A SubGrp G
12 1 3 9 6 cycsubggend φ A ran n n · ˙ A
13 1 2 4 5 11 12 7 ablsimpnosubgd φ ran n n · ˙ A = B
14 8 13 eleqtrrd φ C ran n n · ˙ A
15 9 14 elrnmpt2d φ n C = n · ˙ A