Metamath Proof Explorer


Theorem absimlere

Description: The absolute value of the imaginary part of a complex number is a lower bound of the distance to any real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses absimlere.1 φA
absimlere.2 φB
Assertion absimlere φABA

Proof

Step Hyp Ref Expression
1 absimlere.1 φA
2 absimlere.2 φB
3 2 recnd φB
4 1 3 subcld φAB
5 absimle ABABAB
6 4 5 syl φABAB
7 1 3 imsubd φAB=AB
8 2 reim0d φB=0
9 8 oveq2d φAB=A0
10 1 imcld φA
11 10 recnd φA
12 11 subid1d φA0=A
13 7 9 12 3eqtrrd φA=AB
14 13 fveq2d φA=AB
15 3 1 abssubd φBA=AB
16 6 14 15 3brtr4d φABA