Metamath Proof Explorer


Theorem absmulrposd

Description: Specialization of absmuld with absidd . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses absmulrposd.1 φ 0 A
absmulrposd.2 φ A
absmulrposd.3 φ B
Assertion absmulrposd φ A B = A B

Proof

Step Hyp Ref Expression
1 absmulrposd.1 φ 0 A
2 absmulrposd.2 φ A
3 absmulrposd.3 φ B
4 2 recnd φ A
5 3 recnd φ B
6 4 5 absmuld φ A B = A B
7 2 1 absidd φ A = A
8 7 oveq1d φ A B = A B
9 6 8 eqtrd φ A B = A B