Metamath Proof Explorer


Theorem absmulrposd

Description: Specialization of absmuld with absidd . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses absmulrposd.1 φ0A
absmulrposd.2 φA
absmulrposd.3 φB
Assertion absmulrposd φAB=AB

Proof

Step Hyp Ref Expression
1 absmulrposd.1 φ0A
2 absmulrposd.2 φA
3 absmulrposd.3 φB
4 2 recnd φA
5 3 recnd φB
6 4 5 absmuld φAB=AB
7 2 1 absidd φA=A
8 7 oveq1d φAB=AB
9 6 8 eqtrd φAB=AB