Metamath Proof Explorer


Theorem absproddvds

Description: The absolute value of the product of the elements of a finite subset of the integers is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020)

Ref Expression
Hypotheses absproddvds.s φZ
absproddvds.f φZFin
absproddvds.p P=zZz
Assertion absproddvds φmZmP

Proof

Step Hyp Ref Expression
1 absproddvds.s φZ
2 absproddvds.f φZFin
3 absproddvds.p P=zZz
4 2 1 fproddvdsd φmZmzZz
5 1 sselda φmZm
6 1 sselda φzZz
7 2 6 fprodzcl φzZz
8 7 adantr φmZzZz
9 dvdsabsb mzZzmzZzmzZz
10 5 8 9 syl2anc φmZmzZzmzZz
11 10 biimpd φmZmzZzmzZz
12 11 ralimdva φmZmzZzmZmzZz
13 4 12 mpd φmZmzZz
14 3 breq2i mPmzZz
15 14 ralbii mZmPmZmzZz
16 13 15 sylibr φmZmP