Metamath Proof Explorer


Theorem abv0

Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abv0.a A=AbsValR
abv0.z 0˙=0R
Assertion abv0 FAF0˙=0

Proof

Step Hyp Ref Expression
1 abv0.a A=AbsValR
2 abv0.z 0˙=0R
3 1 abvrcl FARRing
4 eqid BaseR=BaseR
5 4 2 ring0cl RRing0˙BaseR
6 3 5 syl FA0˙BaseR
7 eqid 0˙=0˙
8 1 4 2 abveq0 FA0˙BaseRF0˙=00˙=0˙
9 7 8 mpbiri FA0˙BaseRF0˙=0
10 6 9 mpdan FAF0˙=0