Metamath Proof Explorer


Theorem ac6gf

Description: Axiom of Choice. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses ac6gf.1 yψ
ac6gf.2 y=fxφψ
Assertion ac6gf ACxAyBφff:ABxAψ

Proof

Step Hyp Ref Expression
1 ac6gf.1 yψ
2 ac6gf.2 y=fxφψ
3 cbvrexsvw yBφzBzyφ
4 3 ralbii xAyBφxAzBzyφ
5 1 2 sbhypf z=fxzyφψ
6 5 ac6sg ACxAzBzyφff:ABxAψ
7 6 imp ACxAzBzyφff:ABxAψ
8 4 7 sylan2b ACxAyBφff:ABxAψ