Metamath Proof Explorer


Theorem ac6n

Description: Equivalent of Axiom of Choice. Contrapositive of ac6s . (Contributed by NM, 10-Jun-2007)

Ref Expression
Hypotheses ac6s.1 AV
ac6s.2 y=fxφψ
Assertion ac6n ff:ABxAψxAyBφ

Proof

Step Hyp Ref Expression
1 ac6s.1 AV
2 ac6s.2 y=fxφψ
3 2 notbid y=fx¬φ¬ψ
4 1 3 ac6s xAyB¬φff:ABxA¬ψ
5 4 con3i ¬ff:ABxA¬ψ¬xAyB¬φ
6 dfrex2 xAψ¬xA¬ψ
7 6 imbi2i f:ABxAψf:AB¬xA¬ψ
8 7 albii ff:ABxAψff:AB¬xA¬ψ
9 alinexa ff:AB¬xA¬ψ¬ff:ABxA¬ψ
10 8 9 bitri ff:ABxAψ¬ff:ABxA¬ψ
11 dfral2 yBφ¬yB¬φ
12 11 rexbii xAyBφxA¬yB¬φ
13 rexnal xA¬yB¬φ¬xAyB¬φ
14 12 13 bitri xAyBφ¬xAyB¬φ
15 5 10 14 3imtr4i ff:ABxAψxAyBφ