Metamath Proof Explorer


Theorem ac6s2

Description: Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 . (Contributed by NM, 29-Sep-2006)

Ref Expression
Hypotheses ac6s.1 AV
ac6s.2 y=fxφψ
Assertion ac6s2 xAyφffFnAxAψ

Proof

Step Hyp Ref Expression
1 ac6s.1 AV
2 ac6s.2 y=fxφψ
3 rexv yVφyφ
4 3 ralbii xAyVφxAyφ
5 1 2 ac6s xAyVφff:AVxAψ
6 ffn f:AVfFnA
7 6 anim1i f:AVxAψfFnAxAψ
8 7 eximi ff:AVxAψffFnAxAψ
9 5 8 syl xAyVφffFnAxAψ
10 4 9 sylbir xAyφffFnAxAψ