Metamath Proof Explorer


Theorem ac6s3f

Description: Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses ac6s3f.1 y ψ
ac6s3f.2 A V
ac6s3f.3 y = f x φ ψ
Assertion ac6s3f x A y φ f x A ψ

Proof

Step Hyp Ref Expression
1 ac6s3f.1 y ψ
2 ac6s3f.2 A V
3 ac6s3f.3 y = f x φ ψ
4 rexv y V φ y φ
5 4 ralbii x A y V φ x A y φ
6 5 biimpri x A y φ x A y V φ
7 1 2 3 ac6sf x A y V φ f f : A V x A ψ
8 exsimpr f f : A V x A ψ f x A ψ
9 6 7 8 3syl x A y φ f x A ψ