Description: Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. (Contributed by NM, 5-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | aceq2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral | |
|
2 | 19.23v | |
|
3 | 1 2 | bitri | |
4 | biidd | |
|
5 | 4 | cbvralvw | |
6 | n0 | |
|
7 | elequ2 | |
|
8 | elequ2 | |
|
9 | 7 8 | anbi12d | |
10 | 9 | cbvrexvw | |
11 | 10 | reubii | |
12 | elequ1 | |
|
13 | 12 | anbi2d | |
14 | 13 | rexbidv | |
15 | 14 | cbvreuvw | |
16 | 11 15 | bitri | |
17 | 6 16 | imbi12i | |
18 | 3 5 17 | 3bitr4i | |
19 | 18 | ralbii | |
20 | 19 | exbii | |