Metamath Proof Explorer


Theorem aceq2

Description: Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. (Contributed by NM, 5-Apr-2004)

Ref Expression
Assertion aceq2 yzxwz∃!vzuyzuvuyzxz∃!wzvyzvwv

Proof

Step Hyp Ref Expression
1 df-ral tz∃!vzuyzuvuttz∃!vzuyzuvu
2 19.23v ttz∃!vzuyzuvuttz∃!vzuyzuvu
3 1 2 bitri tz∃!vzuyzuvuttz∃!vzuyzuvu
4 biidd w=t∃!vzuyzuvu∃!vzuyzuvu
5 4 cbvralvw wz∃!vzuyzuvutz∃!vzuyzuvu
6 n0 zttz
7 elequ2 v=uzvzu
8 elequ2 v=uwvwu
9 7 8 anbi12d v=uzvwvzuwu
10 9 cbvrexvw vyzvwvuyzuwu
11 10 reubii ∃!wzvyzvwv∃!wzuyzuwu
12 elequ1 w=vwuvu
13 12 anbi2d w=vzuwuzuvu
14 13 rexbidv w=vuyzuwuuyzuvu
15 14 cbvreuvw ∃!wzuyzuwu∃!vzuyzuvu
16 11 15 bitri ∃!wzvyzvwv∃!vzuyzuvu
17 6 16 imbi12i z∃!wzvyzvwvttz∃!vzuyzuvu
18 3 5 17 3bitr4i wz∃!vzuyzuvuz∃!wzvyzvwv
19 18 ralbii zxwz∃!vzuyzuvuzxz∃!wzvyzvwv
20 19 exbii yzxwz∃!vzuyzuvuyzxz∃!wzvyzvwv