Metamath Proof Explorer


Theorem ackval40

Description: The Ackermann function at (4,0). (Contributed by AV, 9-May-2024)

Ref Expression
Assertion ackval40 Could not format assertion : No typesetting found for |- ( ( Ack ` 4 ) ` 0 ) = ; 1 3 with typecode |-

Proof

Step Hyp Ref Expression
1 df-4 4 = 3 + 1
2 1 fveq2i Could not format ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) : No typesetting found for |- ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) with typecode |-
3 2 fveq1i Could not format ( ( Ack ` 4 ) ` 0 ) = ( ( Ack ` ( 3 + 1 ) ) ` 0 ) : No typesetting found for |- ( ( Ack ` 4 ) ` 0 ) = ( ( Ack ` ( 3 + 1 ) ) ` 0 ) with typecode |-
4 3nn0 3 0
5 ackvalsuc0val Could not format ( 3 e. NN0 -> ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 3 ) ` 1 ) ) : No typesetting found for |- ( 3 e. NN0 -> ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 3 ) ` 1 ) ) with typecode |-
6 4 5 ax-mp Could not format ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 3 ) ` 1 ) : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 3 ) ` 1 ) with typecode |-
7 ackval3012 Could not format <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. : No typesetting found for |- <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. with typecode |-
8 fvex Could not format ( ( Ack ` 3 ) ` 0 ) e. _V : No typesetting found for |- ( ( Ack ` 3 ) ` 0 ) e. _V with typecode |-
9 fvex Could not format ( ( Ack ` 3 ) ` 1 ) e. _V : No typesetting found for |- ( ( Ack ` 3 ) ` 1 ) e. _V with typecode |-
10 fvex Could not format ( ( Ack ` 3 ) ` 2 ) e. _V : No typesetting found for |- ( ( Ack ` 3 ) ` 2 ) e. _V with typecode |-
11 8 9 10 otth Could not format ( <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. <-> ( ( ( Ack ` 3 ) ` 0 ) = 5 /\ ( ( Ack ` 3 ) ` 1 ) = ; 1 3 /\ ( ( Ack ` 3 ) ` 2 ) = ; 2 9 ) ) : No typesetting found for |- ( <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. <-> ( ( ( Ack ` 3 ) ` 0 ) = 5 /\ ( ( Ack ` 3 ) ` 1 ) = ; 1 3 /\ ( ( Ack ` 3 ) ` 2 ) = ; 2 9 ) ) with typecode |-
12 11 simp2bi Could not format ( <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. -> ( ( Ack ` 3 ) ` 1 ) = ; 1 3 ) : No typesetting found for |- ( <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. -> ( ( Ack ` 3 ) ` 1 ) = ; 1 3 ) with typecode |-
13 7 12 ax-mp Could not format ( ( Ack ` 3 ) ` 1 ) = ; 1 3 : No typesetting found for |- ( ( Ack ` 3 ) ` 1 ) = ; 1 3 with typecode |-
14 3 6 13 3eqtri Could not format ( ( Ack ` 4 ) ` 0 ) = ; 1 3 : No typesetting found for |- ( ( Ack ` 4 ) ` 0 ) = ; 1 3 with typecode |-