Metamath Proof Explorer


Theorem ackval3012

Description: The Ackermann function at (3,0), (3,1), (3,2). (Contributed by AV, 7-May-2024)

Ref Expression
Assertion ackval3012 Ack 3 0 Ack 3 1 Ack 3 2 = 5 13 29

Proof

Step Hyp Ref Expression
1 ackval3 Ack 3 = n 0 2 n + 3 3
2 oveq1 n = 0 n + 3 = 0 + 3
3 3cn 3
4 3 addlidi 0 + 3 = 3
5 2 4 eqtrdi n = 0 n + 3 = 3
6 5 oveq2d n = 0 2 n + 3 = 2 3
7 6 oveq1d n = 0 2 n + 3 3 = 2 3 3
8 cu2 2 3 = 8
9 8 oveq1i 2 3 3 = 8 3
10 5cn 5
11 5p3e8 5 + 3 = 8
12 11 eqcomi 8 = 5 + 3
13 10 3 12 mvrraddi 8 3 = 5
14 9 13 eqtri 2 3 3 = 5
15 7 14 eqtrdi n = 0 2 n + 3 3 = 5
16 0nn0 0 0
17 16 a1i Ack 3 = n 0 2 n + 3 3 0 0
18 5nn0 5 0
19 18 a1i Ack 3 = n 0 2 n + 3 3 5 0
20 1 15 17 19 fvmptd3 Ack 3 = n 0 2 n + 3 3 Ack 3 0 = 5
21 oveq1 n = 1 n + 3 = 1 + 3
22 ax-1cn 1
23 3p1e4 3 + 1 = 4
24 3 22 23 addcomli 1 + 3 = 4
25 21 24 eqtrdi n = 1 n + 3 = 4
26 25 oveq2d n = 1 2 n + 3 = 2 4
27 26 oveq1d n = 1 2 n + 3 3 = 2 4 3
28 2exp4 2 4 = 16
29 28 oveq1i 2 4 3 = 16 3
30 1nn0 1 0
31 3nn0 3 0
32 30 31 deccl 13 0
33 32 nn0cni 13
34 eqid 13 = 13
35 3p3e6 3 + 3 = 6
36 30 31 31 34 35 decaddi 13 + 3 = 16
37 36 eqcomi 16 = 13 + 3
38 33 3 37 mvrraddi 16 3 = 13
39 29 38 eqtri 2 4 3 = 13
40 27 39 eqtrdi n = 1 2 n + 3 3 = 13
41 30 a1i Ack 3 = n 0 2 n + 3 3 1 0
42 32 a1i Ack 3 = n 0 2 n + 3 3 13 0
43 1 40 41 42 fvmptd3 Ack 3 = n 0 2 n + 3 3 Ack 3 1 = 13
44 oveq1 n = 2 n + 3 = 2 + 3
45 2cn 2
46 3p2e5 3 + 2 = 5
47 3 45 46 addcomli 2 + 3 = 5
48 44 47 eqtrdi n = 2 n + 3 = 5
49 48 oveq2d n = 2 2 n + 3 = 2 5
50 49 oveq1d n = 2 2 n + 3 3 = 2 5 3
51 2exp5 2 5 = 32
52 51 oveq1i 2 5 3 = 32 3
53 2nn0 2 0
54 9nn0 9 0
55 53 54 deccl 29 0
56 55 nn0cni 29
57 eqid 29 = 29
58 2p1e3 2 + 1 = 3
59 9p3e12 9 + 3 = 12
60 53 54 31 57 58 53 59 decaddci 29 + 3 = 32
61 60 eqcomi 32 = 29 + 3
62 56 3 61 mvrraddi 32 3 = 29
63 52 62 eqtri 2 5 3 = 29
64 50 63 eqtrdi n = 2 2 n + 3 3 = 29
65 53 a1i Ack 3 = n 0 2 n + 3 3 2 0
66 55 a1i Ack 3 = n 0 2 n + 3 3 29 0
67 1 64 65 66 fvmptd3 Ack 3 = n 0 2 n + 3 3 Ack 3 2 = 29
68 20 43 67 oteq123d Ack 3 = n 0 2 n + 3 3 Ack 3 0 Ack 3 1 Ack 3 2 = 5 13 29
69 1 68 ax-mp Ack 3 0 Ack 3 1 Ack 3 2 = 5 13 29