Metamath Proof Explorer


Theorem ackval41

Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024)

Ref Expression
Assertion ackval41 Could not format assertion : No typesetting found for |- ( ( Ack ` 4 ) ` 1 ) = ; ; ; ; 6 5 5 3 3 with typecode |-

Proof

Step Hyp Ref Expression
1 ackval41a Could not format ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-
2 6nn0 60
3 5nn0 50
4 2 3 deccl 650
5 4 3 deccl 6550
6 3nn0 30
7 5 6 deccl 65530
8 2exp16 216=65536
9 3p1e4 3+1=4
10 eqid 6553=6553
11 5 6 9 10 decsuc 6553+1=6554
12 3cn 3
13 gbpart6 6=3+3
14 12 12 13 mvrraddi 63=3
15 7 2 6 8 11 14 decsubi 2163=65533
16 1 15 eqtri Could not format ( ( Ack ` 4 ) ` 1 ) = ; ; ; ; 6 5 5 3 3 : No typesetting found for |- ( ( Ack ` 4 ) ` 1 ) = ; ; ; ; 6 5 5 3 3 with typecode |-