Metamath Proof Explorer
		
		
		
		Description:  The Ackermann function at (4,1).  (Contributed by AV, 9-May-2024)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | ackval41 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackval41a |  | 
						
							| 2 |  | 6nn0 |  | 
						
							| 3 |  | 5nn0 |  | 
						
							| 4 | 2 3 | deccl |  | 
						
							| 5 | 4 3 | deccl |  | 
						
							| 6 |  | 3nn0 |  | 
						
							| 7 | 5 6 | deccl |  | 
						
							| 8 |  | 2exp16 |  | 
						
							| 9 |  | 3p1e4 |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 5 6 9 10 | decsuc |  | 
						
							| 12 |  | 3cn |  | 
						
							| 13 |  | gbpart6 |  | 
						
							| 14 | 12 12 13 | mvrraddi |  | 
						
							| 15 | 7 2 6 8 11 14 | decsubi |  | 
						
							| 16 | 1 15 | eqtri |  |