Metamath Proof Explorer


Theorem acncc

Description: An ax-cc equivalent: every set has choice sets of length _om . (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acncc AC_ω=V

Proof

Step Hyp Ref Expression
1 vex xV
2 omex ωV
3 isacn xVωVxAC_ωf𝒫xωgyωgyfy
4 1 2 3 mp2an xAC_ωf𝒫xωgyωgyfy
5 axcc2 ggFnωyωfygyfy
6 elmapi f𝒫xωf:ω𝒫x
7 ffvelcdm f:ω𝒫xyωfy𝒫x
8 eldifsni fy𝒫xfy
9 7 8 syl f:ω𝒫xyωfy
10 6 9 sylan f𝒫xωyωfy
11 id fygyfyfygyfy
12 10 11 syl5com f𝒫xωyωfygyfygyfy
13 12 ralimdva f𝒫xωyωfygyfyyωgyfy
14 13 adantld f𝒫xωgFnωyωfygyfyyωgyfy
15 14 eximdv f𝒫xωggFnωyωfygyfygyωgyfy
16 5 15 mpi f𝒫xωgyωgyfy
17 4 16 mprgbir xAC_ω
18 17 1 2th xAC_ωxV
19 18 eqriv AC_ω=V