Metamath Proof Explorer


Theorem isacn

Description: The property of being a choice set of length A . (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion isacn XVAWXAC_Af𝒫XAgxAgxfx

Proof

Step Hyp Ref Expression
1 pweq y=X𝒫y=𝒫X
2 1 difeq1d y=X𝒫y=𝒫X
3 2 oveq1d y=X𝒫yA=𝒫XA
4 3 raleqdv y=Xf𝒫yAgxAgxfxf𝒫XAgxAgxfx
5 4 anbi2d y=XAVf𝒫yAgxAgxfxAVf𝒫XAgxAgxfx
6 df-acn AC_A=y|AVf𝒫yAgxAgxfx
7 5 6 elab2g XVXAC_AAVf𝒫XAgxAgxfx
8 elex AWAV
9 biid AVf𝒫XAgxAgxfxAVf𝒫XAgxAgxfx
10 9 baib AVAVf𝒫XAgxAgxfxf𝒫XAgxAgxfx
11 8 10 syl AWAVf𝒫XAgxAgxfxf𝒫XAgxAgxfx
12 7 11 sylan9bb XVAWXAC_Af𝒫XAgxAgxfx