Metamath Proof Explorer


Theorem acni

Description: The property of being a choice set of length A . (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acni XAC_AF:A𝒫XgxAgxFx

Proof

Step Hyp Ref Expression
1 fveq1 f=Ffx=Fx
2 1 eleq2d f=FgxfxgxFx
3 2 ralbidv f=FxAgxfxxAgxFx
4 3 exbidv f=FgxAgxfxgxAgxFx
5 acnrcl XAC_AAV
6 isacn XAC_AAVXAC_Af𝒫XAgxAgxfx
7 5 6 mpdan XAC_AXAC_Af𝒫XAgxAgxfx
8 7 ibi XAC_Af𝒫XAgxAgxfx
9 8 adantr XAC_AF:A𝒫Xf𝒫XAgxAgxfx
10 pwexg XAC_A𝒫XV
11 10 difexd XAC_A𝒫XV
12 11 5 elmapd XAC_AF𝒫XAF:A𝒫X
13 12 biimpar XAC_AF:A𝒫XF𝒫XA
14 4 9 13 rspcdva XAC_AF:A𝒫XgxAgxFx