| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifsn |
|
| 2 |
|
elpw2g |
|
| 3 |
2
|
anbi1d |
|
| 4 |
1 3
|
bitrid |
|
| 5 |
4
|
ralbidv |
|
| 6 |
5
|
biimpar |
|
| 7 |
|
eqid |
|
| 8 |
7
|
fmpt |
|
| 9 |
6 8
|
sylib |
|
| 10 |
|
acni |
|
| 11 |
9 10
|
syldan |
|
| 12 |
|
nffvmpt1 |
|
| 13 |
12
|
nfel2 |
|
| 14 |
|
nfv |
|
| 15 |
|
fveq2 |
|
| 16 |
|
fveq2 |
|
| 17 |
15 16
|
eleq12d |
|
| 18 |
13 14 17
|
cbvralw |
|
| 19 |
|
simplr |
|
| 20 |
|
simplr |
|
| 21 |
|
simpll |
|
| 22 |
|
simpr |
|
| 23 |
21 22
|
ssexd |
|
| 24 |
7
|
fvmpt2 |
|
| 25 |
20 23 24
|
syl2anc |
|
| 26 |
25
|
eleq2d |
|
| 27 |
26
|
ex |
|
| 28 |
27
|
adantrd |
|
| 29 |
28
|
ralimdva |
|
| 30 |
29
|
imp |
|
| 31 |
|
ralbi |
|
| 32 |
30 31
|
syl |
|
| 33 |
32
|
biimpa |
|
| 34 |
|
ssel |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
ral2imi |
|
| 37 |
19 33 36
|
sylc |
|
| 38 |
|
fveq2 |
|
| 39 |
38
|
eleq1d |
|
| 40 |
39
|
rspccva |
|
| 41 |
37 40
|
sylan |
|
| 42 |
41
|
fmpttd |
|
| 43 |
|
simpll |
|
| 44 |
|
acnrcl |
|
| 45 |
43 44
|
syl |
|
| 46 |
|
fex2 |
|
| 47 |
42 45 43 46
|
syl3anc |
|
| 48 |
|
eqid |
|
| 49 |
|
fvex |
|
| 50 |
15 48 49
|
fvmpt |
|
| 51 |
50
|
eleq1d |
|
| 52 |
51
|
ralbiia |
|
| 53 |
33 52
|
sylibr |
|
| 54 |
42 53
|
jca |
|
| 55 |
|
feq1 |
|
| 56 |
|
fveq1 |
|
| 57 |
56
|
eleq1d |
|
| 58 |
57
|
ralbidv |
|
| 59 |
55 58
|
anbi12d |
|
| 60 |
47 54 59
|
spcedv |
|
| 61 |
60
|
ex |
|
| 62 |
18 61
|
biimtrid |
|
| 63 |
62
|
exlimdv |
|
| 64 |
11 63
|
mpd |
|