Metamath Proof Explorer


Theorem acosf

Description: Domain and codoamin of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion acosf arccos:

Proof

Step Hyp Ref Expression
1 df-acos arccos=xπ2arcsinx
2 picn π
3 halfcl ππ2
4 2 3 ax-mp π2
5 asincl xarcsinx
6 subcl π2arcsinxπ2arcsinx
7 4 5 6 sylancr xπ2arcsinx
8 1 7 fmpti arccos: