Metamath Proof Explorer


Theorem add12d

Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addd.1 φA
addd.2 φB
addd.3 φC
Assertion add12d φA+B+C=B+A+C

Proof

Step Hyp Ref Expression
1 addd.1 φA
2 addd.2 φB
3 addd.3 φC
4 add12 ABCA+B+C=B+A+C
5 1 2 3 4 syl3anc φA+B+C=B+A+C