Metamath Proof Explorer


Theorem addccncf2

Description: Adding a constant is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis addccncf2.1 F=xAB+x
Assertion addccncf2 ABF:Acn

Proof

Step Hyp Ref Expression
1 addccncf2.1 F=xAB+x
2 simpl ABA
3 simpr ABB
4 ssidd AB
5 2 3 4 constcncfg ABxAB:Acn
6 ssid
7 cncfmptid AxAx:Acn
8 6 7 mpan2 AxAx:Acn
9 8 adantr ABxAx:Acn
10 5 9 addcncf ABxAB+x:Acn
11 1 10 eqeltrid ABF:Acn