Metamath Proof Explorer


Theorem addcom

Description: Addition commutes. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion addcom ABA+B=B+A

Proof

Step Hyp Ref Expression
1 1cnd AB1
2 1 1 addcld AB1+1
3 simpl ABA
4 simpr ABB
5 2 3 4 adddid AB1+1A+B=1+1A+1+1B
6 3 4 addcld ABA+B
7 1p1times A+B1+1A+B=A+B+A+B
8 6 7 syl AB1+1A+B=A+B+A+B
9 1p1times A1+1A=A+A
10 1p1times B1+1B=B+B
11 9 10 oveqan12d AB1+1A+1+1B=A+A+B+B
12 5 8 11 3eqtr3rd ABA+A+B+B=A+B+A+B
13 3 3 addcld ABA+A
14 13 4 4 addassd ABA+A+B+B=A+A+B+B
15 6 3 4 addassd ABA+B+A+B=A+B+A+B
16 12 14 15 3eqtr4d ABA+A+B+B=A+B+A+B
17 13 4 addcld ABA+A+B
18 6 3 addcld ABA+B+A
19 addcan2 A+A+BA+B+ABA+A+B+B=A+B+A+BA+A+B=A+B+A
20 17 18 4 19 syl3anc ABA+A+B+B=A+B+A+BA+A+B=A+B+A
21 16 20 mpbid ABA+A+B=A+B+A
22 3 3 4 addassd ABA+A+B=A+A+B
23 3 4 3 addassd ABA+B+A=A+B+A
24 21 22 23 3eqtr3d ABA+A+B=A+B+A
25 4 3 addcld ABB+A
26 addcan AA+BB+AA+A+B=A+B+AA+B=B+A
27 3 6 25 26 syl3anc ABA+A+B=A+B+AA+B=B+A
28 24 27 mpbid ABA+B=B+A