Metamath Proof Explorer


Theorem addcompr

Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of Gleason p. 123. (Contributed by NM, 19-Nov-1995) (New usage is discouraged.)

Ref Expression
Assertion addcompr A+𝑷B=B+𝑷A

Proof

Step Hyp Ref Expression
1 plpv A𝑷B𝑷A+𝑷B=x|zAyBx=z+𝑸y
2 plpv B𝑷A𝑷B+𝑷A=x|yBzAx=y+𝑸z
3 addcomnq y+𝑸z=z+𝑸y
4 3 eqeq2i x=y+𝑸zx=z+𝑸y
5 4 2rexbii yBzAx=y+𝑸zyBzAx=z+𝑸y
6 rexcom yBzAx=z+𝑸yzAyBx=z+𝑸y
7 5 6 bitri yBzAx=y+𝑸zzAyBx=z+𝑸y
8 7 abbii x|yBzAx=y+𝑸z=x|zAyBx=z+𝑸y
9 2 8 eqtrdi B𝑷A𝑷B+𝑷A=x|zAyBx=z+𝑸y
10 9 ancoms A𝑷B𝑷B+𝑷A=x|zAyBx=z+𝑸y
11 1 10 eqtr4d A𝑷B𝑷A+𝑷B=B+𝑷A
12 dmplp dom+𝑷=𝑷×𝑷
13 12 ndmovcom ¬A𝑷B𝑷A+𝑷B=B+𝑷A
14 11 13 pm2.61i A+𝑷B=B+𝑷A