Metamath Proof Explorer


Theorem addlelt

Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021)

Ref Expression
Assertion addlelt MNA+M+ANM<N

Proof

Step Hyp Ref Expression
1 rpgt0 A+0<A
2 1 3ad2ant3 MNA+0<A
3 rpre A+A
4 3 3ad2ant3 MNA+A
5 simp1 MNA+M
6 4 5 ltaddposd MNA+0<AM<M+A
7 2 6 mpbid MNA+M<M+A
8 simpl MA+M
9 3 adantl MA+A
10 8 9 readdcld MA+M+A
11 10 3adant2 MNA+M+A
12 simp2 MNA+N
13 ltletr MM+ANM<M+AM+ANM<N
14 5 11 12 13 syl3anc MNA+M<M+AM+ANM<N
15 7 14 mpand MNA+M+ANM<N